Mink Production - Health, Disease Prevention, and Disease Eradication at a National, Regional and Farm Level

Hans Henrik Dietz, Associate Professor, DVM, PhD, Dr.h.c.
Head of Dept.
Dept. of Large Animal Sciences
International Coordinator of the Veterinary Program
School of Veterinary Medicine and Animal Science
Faculty of Health and Medical Sciences
University of Copenhagen
DENMARK
“...an important step towards regulatory and preventive zoonotic diseases, protection of food safety of animal products, establishment of modern veterinary medical techniques, identification of animal welfare issues as well as enhancement of laboratory-animal knowledge. It is also essential to develop the veterinary specialties system and continuing education.”

Cit: http://www.vm.ntu.edu.tw/DVM_Eng/
Thanks for the invitation to visit Taiwan and join you for the 15th Asian Association of Veterinary Schools Congress.
Content of this presentation

Introduction
- status on important livestock diseases in Denmark
- the Danish cooperative system

Production of mink

Prevalent diseases in mink
- distemper virus infection in mink and harbour seals
- parvo virus infection in mink

Eradication of diseases
- examples of eradicated diseases in man and animals
- Aleutian Disease in mink

Prevention of diseases in mink
- biosafety and biosecurity
- vaccination

Taipeh October 2016
Introduction

- status on important livestock diseases in Denmark
- the Danish cooperative system
Danish livestock diseases status

OIE Listed diseases
The following diseases **do not** occur in Denmark:

- Foot and mouth disease 1983
- Vesicular stomatitis (never recorded)
- Swine vesicular disease (never recorded)
- Rinderpest 1782
- Peste des petits ruminants (never recorded)
- Contagious bovine pleuropneumonia 1886
- Lumpy skin disease (never recorded)
- Rift Valley fever (never recorded)
- Bluetongue 2008 (BTV 8)
- Sheep pox and goat pox 1879
- African horse sickness (never recorded)
- African swine fever (never recorded)
- Classical swine fever (hog cholera) 1933
- Highly pathogenic avian influenza (Fowl plague) 2006
- Low pathogenic avian influenza 2013
- Newcastle disease 2005
Cooperative partners in the "The Danish "model

Ministry of Environment and Food
The Danish Veterinary and Food Administration

Danish Agriculture & Food Council

DTU Vet
National Veterinary Institute

UNIVERSITY OF COPENHAGEN

Taipeh 20 October 2016
Cooperation between stakeholders

“The Danish Model”

Good and trustful cooperation between industry (pig, cattle, milk, poultry, mink), universities and authorities for decades:

- Regular meetings
- Working groups
- R & D
- Network and personal contacts
Benefits of the co-operative system

Commercial interest of producers “beyond the farm gate”

Trust/stable relationship between producer and next step in the value chain

Joint Research Programmes

Excellent communication, information flow

Easy assimilation of quality initiatives

INTEGRATED PRODUCTION SYSTEM
Focus - from farm to consumer
Danish pigs as an example
Cornerstones in the Danish veterinary system

Harmonised EU legislation on animal health area
Quarantine of farms with suspected disease
Culling of infected farms
Tracing of contacts
Cleaning and disinfection
National stand-still for live animals
Ban on export of live animals of susceptible species
Protection and surveillance zones
Emergency Vaccination is a possibility
Compensation payments to owners
National Veterinary Institute – reference lab for animal diseases
Contingency plans
Danish veterinary legislation

Veterinary health control in all herds
Herd health advisory agreements
Antibiotics must be prescribed by a veterinary practitioner
Veterinarians are not allowed to sell medicine to farmers
All medicines are supplied via pharmacies
A very high level of Animal Health in Denmark
Production of mink
Distribution of mink farms in Denmark
Life cycle of mink (*Neovison vison*)

Mating starts in March

The puppies are born between 25 April and 10 May

When the puppies are 8 weeks old, they are weaned

In November the animals are killed by means of carbon monoxide or carbon dioxide.
The end product – Danish fur
Prevalent diseases in mink

Parvo virus infection in mink
Distemper virus infection in mink and harbour seals
Mink Virus Enteritis

- A parvo virus infection
- Haemorrhagic diarrhoea
- Necrotizing enteritis with “balloon cells”
- Highly varying morbidity and mortality
- Diagnosed histologically and with an antigen ELISA
Distemper

- A very serious morbilli virus infection
- Varying incubation period
- Vaccine effective if correctly administered
- Giant cell pneumonia in prolonged cases
- Hard pad disease in prolonged cases
First signs of PDV infection 2002

The 2002 phocine distemper outbreak in harbour seals started at the same location as the 1988 epidemic. In that year, the disease spread from Anholt in April to the Wadden Sea by May, to the southern Baltic Sea by July, and to the waters around the United Kingdom by August, killing approximately 18 000 animals. Jensen, Bildt, Dietz, Andersen, Hammer, Kuiken, Osterhaus, *Science*, 2002.
Necrotizing pneumonia, harbour seal, PDV-positive (RT-PCR). X250

Eradication of diseases

Examples of eradicated diseases in man and animals
 - rinderpest in cattle - 2011
 - smallpox in man - 1979

Example of eradication procedures in mink
 - Aleutian Disease in mink
The first recorded veterinary research

Shalihotra (c. 2350 BC) the son of a Brahmin is considered the founder of veterinary sciences. He may have lived in Uttar Pradesh, India. His work is focused on horse and elephant anatomy, physiology, surgery and diseases.
Training of the first veterinary students

The first veterinary school was founded in Lyon, France in 1761 by Claude Bourgelat to combat cattle plaque (Rinderpest). In the following years a number of veterinary schools in European countries established similar veterinary schools. The veterinary school in Copenhagen was founded in 1773.
Rinderpest
- last confirmed case in 2001
- officially eradicated in 2011
Aleutian Disease/Plasmacytosis

- Chronic infection in mink
- Caused by a very stable parvo virus
- Affects all colour types at all ages
- Causes a constantly high production of antibodies
- No vaccine available
- Animals die from chronic infection and disease changes in the kidneys, liver, lung, brain and other organs
- Different disease courses in kits and adults
Inverse connection between breeding result and barren females in the beginning of an eradication programme

Blue: Kits born/female. Red: Barren females in percent

Taipeh October 2016
How to eradicate a disease?

Register all farms very carefully!

This map shows (one colored dot = 1 farm) all Danish mink farms.

Taipeh October 2016
Prevention of diseases

Green dot = AD free mink farm
Blue dot = 1-3 AD reagents
Red dot = >3 AD reagents = infected
Orange square = Stamped out farms
Turquoise triangle = Temporary farms

2016 AAVS Congress
at NTU DVM 20-21 Oct.
Prevention of diseases

- biosafety and biosecurity
- vaccination
- research
Research - in recent times

How far was research from practical treatment of diseases in 1772?

Illustration of the technique for exhibiting blood vessels. Copper plate (Lafosse 1772)
Research 100 years ago

In 1897 Bernhard Bang (MD, DVM, 1848 - 1932) was the first scientist to use tuberculin on cattle, and realised its importance in identifying infected animals. He went on to develop control measures for bovine tuberculosis that led to a dramatic decrease in the incidence of the disease. In 1897, Bang also discovered the bacterium Brucella abortus to be the cause of “undulant fever” in cattle. This organism can also infect and cause chronic disease in humans.

One Health 119 years ago?

Taipeh October 2016
The European scene for veterinary students and veterinarians

- 28 EU member countries
- 28 different languages & national legislations
- The world's 3rd largest population (China and India)
- 150 mill pigs
- 12 mill tonnes poultry meat
- 80 mill heads of cattle
- 150 mill tonnes of milk
- 100 mill sheep and goats

Training of pre graduate veterinary students in the EU

Taipeh October 2016
What's our priority in animal production?

Antibiotic free production? Maximum production to satisfy the global needs? Sustainability or maximum profit? Quantity or quality? Control or trust? Animal welfare? Disease free production? Insects? Global or local cooperation?

Taipeh October 2016
The future is unpredictable but Susskind imagines at least 2 different ways.

More of the same - but more efficient and including new technology.

A transformation of the individual veterinarian to technological systems.
Some issues don’t change for veterinarians

Infectious diseases
Emerging and re-emerging diseases
Zoonoses
One Health
Herd health management (preventive veterinary medicine)
Thank you for your attention

Hans Henrik Dietz
Associate Professor, DVM, PhD, Dr. h.c.
Dept. Head.
International Coordinator

Debt. Large Animal Sciences
Faculty of Health and Medical Sciences
School of Veterinary Medicine & Animal Sciences
University of Copenhagen
Hojbakkegaard Alle 5 • DK-2630 Taastrup
Tel: +45 21 49 70 90 • hhd@sund.ku.dk

Taipeh October 2016